

THE BENEFITS AND CHALLENGES OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

Tobias Gemmeke imec-nl / Holst-Centre

NiPS Summer School 2014

Perugia, Italy, July 14-18, 2014

imec

THE BENEFITS AND CHALLENGES OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

THE BENEFITS AND CHALLENGES OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

- Pro-active
- Enhance
- Protect

WEARABLE DEVICES

[http://enterrasolutions.com/media/Wearable-devices.png]

WIRELESS IMPLANTABLE MEDICAL DEVICES

[http://heightech.blogspot.be/2013/04/cutting-edge-wearable-medical-devices.html]

Strategy: Wearable

Create wearable market with Flexible and sensor integration

Tobias Gemmeke - NiPS Summer School 2014

ANALYST DA

INDEPENDENT LIFESTYLE ... ENHANCE

Ear2ear communication

- Directional hearing
- Noise suppression

- Adjust to environment (noise level)
- Volume, pitch, tone
- Streaming: (invisible speakers)
- Music
- Communication

ENHANCE

Steve Mann's "wearable computer" and "reality mediator" inventions of the 1970s have evolved into what looks like ordinary eyeglasses.

ENHANCE ... INDEPENDENT LIFESTYLE

SENSOR FUSION

FROM QUANTIFIED SELF TO QUALIFIED SELF

imec

ULTRA-LOW-POWER HOLISTIC DESIGN FOR SMART BIO-SIGNALS COMPUTING PLATFORMS

THE **BENEFITS** AND CHALLENGES OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

WHAT IS THE DIFFERENCE?

NEAR-THRESHOLD COMPUTING

$$P_{dyn} = sf \cdot C \cdot V_{DD}^{2} \cdot f$$
$$E_{dyn} = sf \cdot C \cdot V_{DD}^{2}$$

NEAR-THRESHOLD COMPUTING

 $E_{dyn} = sf \cdot C \cdot V_{DD}^{2}$ $E_{dyn} \sim V_{DD}^{2}$

THE BENEFITS AND **CHALLENGES** OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

PERFORMANCE

LEAKAGE

NEAR-THRESHOLD COMPUTING *THE CHALLENGES*

NEAR-THRESHOLD COMPUTING THE CHALLENGES

NEAR-THRESHOLD COMPUTING

ENABLING A WIDE OPERATING RANGE

ENABLING A WIDE OPERATING RANGE

THE **BENEFITS** AND CHALLENGES OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

A CASE STUDY

CASE STUDY: ECG PATCH

COMBATING LEAKAGE CURRENT

I.6x more energy efficient ECG

imec

Tobias Gemmeke - NiPS Summer School 2014

IDEAL SOLUTION ZERO LEAKAGE RETENTION

IDEAL SOLUTION ZERO LEAKAGE RETENTION

IDEAL SLEEP AND WAKE UP IMPACT ON THE WBSN (here: ECG PATCH)

	Streaming	Efficient processing	Normally-off computing
Power consumption	385 μw	I73 μw	80 µw
Battery life time	24h	2 days	5 days

Powering by harvesters possible!

THE **BENEFITS** AND CHALLENGES OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

TECHNOLOGY SELECTION

WHAT IMPACTS THE POINT OF E_{MIN}

THE BENEFITS AND **CHALLENGES** OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

VARIABILITY

NEAR-THRESHOLD COMPUTING *THE CHALLENGES*

imec

VARIABILITY SPOILS THE BENEFITS?

NEAR-THRESHOLD COMPUTING *THE CHALLENGES*

Variability

 \rightarrow Increased variability kills yield.

NEAR-THRESHOLD COMPUTING *THE CHALLENGES*

NOISE MARGIN MODEL

 $NM_i = c_0 \cdot V_{\rm DD} + c_1 + c_2 / \sqrt{N_i}$

Addressing the Noise Margin

- Bigger is better.
- Limit stack-height.

SCALING OF THE NOISE MARING

Tobias Gemmeke - NiPS Summer School 2014

1

NOISE MARGIN DISTRIBUTION OF DIFFERENT CELL TYPES AND DRIVES

 \rightarrow Non trivial cell design.

NMASSESSMENT T₀

NMASSESSMENT T₀

NM ASSESSMENT: TIME DEPENDENT

> Aging has significant impact on devices behavior.

Trace dependent behavior.
Complex reliability analysis.

THE BENEFITS AND **CHALLENGES** OF NEAR-THRESHOLD COMPUTING FOR WEARABLE DEVICES

MEMORIES

NTC AND MEMORIES

Silicon measurement & modeling:

V_{DDmin}: RW Errors vs. supply voltage

NTC AND MEMORIES

Solutions

- ➢ ECC
- Cell based memories (cf. figure)
- > Architecture (cf. next slides)

> Algorithm

NTC AND MEMORIES

Silicon measurement & modeling:

EXAMPLE: ULTRA-LOW POWER SRP

[Konijnenburg, ISSC 2013]

SoC

- Samsung Reconfigurable Processor (SRP)
- 9 cores
- CMOS 40nm LP
- Wide-range IMHz ... 150 MHz

SOLVING THE MEMORY BOTTLENECK

$1.1V \rightarrow P_{100\%}$

SOLVING THE MEMORY BOTTLENECK

CELL BASED MEMORIES FOR NTC

Low-Voltage Operation

SOLVING THE MEMORY BOTTLENECK

- Memories limit supply voltage scaling at V_{DD,min}
- V_{DD,min} << specified limit
- Operation @ actual $V_{DD,min} \rightarrow P_{dyn} \& P_{stat} \downarrow$
- ➔ Pro-actively set V_{DD,min} + mitigate errors

CONCLUSION

The **benefits** and **challenges** of Near-Threshold Computing (**NTC**) for **wearable devices**

- Run-time from hours to weeks ... to fully autonomous
- Specific challenges have to be addressed
 - Performance
 - Leakage
 - Variability
 - Supply generation
- Solutions cross design hierarchies from
 - Technology selection
 - Digital design (flow, cells, monitoring)
 - Architecture
 - Algorithm level

